

ecoeficiencia ecoinnovación ecorresponsabilidad economía baja en carbono

ARQUITECTURA PARA UNA ECONOMÍA BAJA EN CARBONO

ANÁLISIS DE CASOS PRÁCTICOS DE ECOEFICIENCIA EN EL DISEÑO DE LA EDIFICACIÓN Y REHABILITACIÓN DE INMUEBLES

Los principios bioclimáticos deben aparecer como un hábito en la construcción y no como una rareza o una excepción. Por eso se debe hablar de buenas prácticas y de buena arquitectura y no de arquitectura singular. Estas buenas prácticas deben tener como objetivo la calidad del ambiente interior y la reducción de los efectos negativos sobre el entorno.

Dr. F.J Neila profesor de la ETSAM

27 Viviendas de Protección Oficial de alquiler para jovenes. Arq. Emiliano López y Mónica Ribera Fotografías de José Hevia

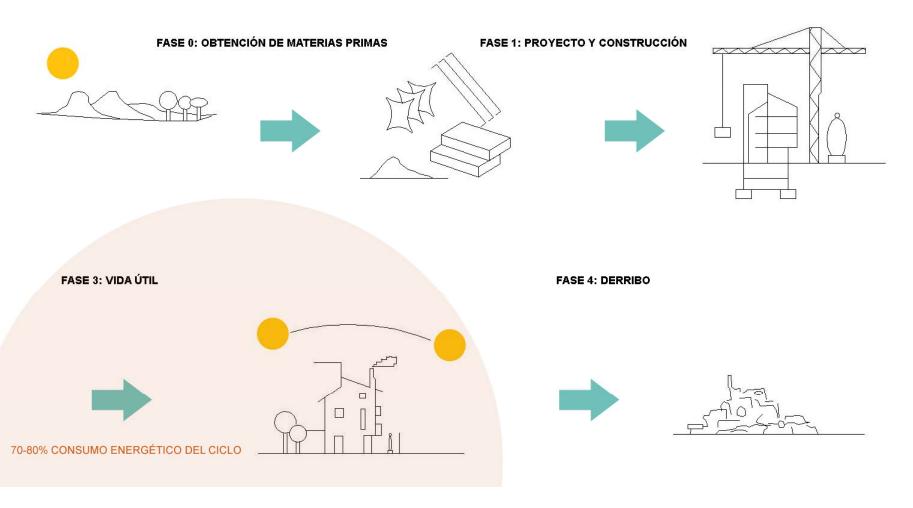
1°.- INTRODUCCIÓN

- 1.1 Propósito del trabajo
- 1.2 Análisis sobre la documentación existente en edificación y sostenibilidad en el Mediterráneo Sur
- 1.3 Descripción de las condiciones climáticas de la Región de Murcia
 - 1.3.1 Datos climatológicos
 - 1.3.2 Radiación solar
- 1.4 Definición de los consumos energéticos e hídricos en los edificios
 - 1.4.1 En fase de ejecución-rehabilitación
 - 1.4.2 Durante su vida útil-derribo
- 2°.- CATÁLOGO DE ESTRATEGIAS DE DISEÑO ORIENTADAS AL AUMENTO DE LA EFICIENCIA ENERGÉTICA DE LOS EDIFICIOS Y LA REDUCCIÓN DEL CONSUMO DE AGUA EN LA REGIÓN DE MURCIA SIN SOBRECOSTE INASUMIBLE PARA LAS LEYES DEL MERCADO.
- 3°.- METODOLOGÍA
- 4°.- ANÁLISIS Y ESTUDIO DE DIEZ CASOS PRÁCTICOS DE POSIBLE APLICACIÓN EN LA REGIÓN DE MURCIA. FICHAS DE TRABAJO
- 5°.- CONCLUSIONES
- 6°.- BIBLIOGRAFÍA Y ENTIDADES CONSULTADAS

1°.- INTRODUCCIÓN

- 1.1 Propósito del trabajo
- 1.2 Análisis sobre la documentación existente en edificación y sostenibilidad en el Mediterráneo Sur
- 1.3 Descripción de las condiciones climáticas de la Región de Murcia
 - 1.3.1 Datos climatológicos
 - 1.3.2 Radiación solar
- 1.4 Definición de los consumos energéticos e hídricos en los edificios
 - 1.4.1 En fase de ejecución-rehabilitación
 - 1.4.2 Durante su vida útil-derribo
- 2°.- CATÁLOGO DE ESTRATEGIAS DE DISEÑO ORIENTADAS AL AUMENTO DE LA EFICIENCIA ENERGÉTICA DE LOS EDIFICIOS Y LA REDUCCIÓN DEL CONSUMO DE AGUA EN LA REGIÓN DE MURCIA SIN SOBRECOSTE INASUMIBLE PARA LAS LEYES DEL MERCADO.
- 3°.- METODOLOGÍA
- 4°.- ANÁLISIS Y ESTUDIO DE DIEZ CASOS PRÁCTICOS DE POSIBLE APLICACIÓN EN LA REGIÓN DE MURCIA. FICHAS DE TRABAJO
- 5°.- CONCLUSIONES
- 6°.- BIBLIOGRAFÍA Y ENTIDADES CONSULTADAS

El CONSUMO DE ENERGÍA Y AGUA por los servicios asociados a los edificios supone aproximadamente un tercio del consumo energético de UE y un 20% del consumo hídrico.


ESTABLECER MEDIDAS DE OPTIMIZACIÓN, supondría un importante ahorro y contribuiría a luchar contra el cambio climático.

PROPÓSITO DEL TRABAJO

- Identificar y valorar estrategias constructivas a utilizar en la Región.
- Recopilar opiniones de expertos en:
 - el proyecto de arquitecturas sensibles con el Medio Ambiente.
 - en la comercialización de estos productos.
 - en la difusión del conocimiento y la sensibilización de la sociedad.

ÁMBITO DEL TRABAJO

METODOLOGÍA

Las fichas se han realizado en base a la recopilación de datos publicados en diferentes estudios de contrastada fiabilidad, que se apoyan en ensayos conforme a normativa correspondiente y coordinados por entes públicos y universitarios.

EL TRABAJO DEFINE UN ESCENARIO sobre el que se calcula la influencia de las medidas adoptadas y cuyos parámetros principales son:

1. CONSUMO ENERGÉTICO: datos del Centro Nacional de Energías Renovables para la ciudad de Murcia

Calefacción: 25,7kwh/m² año Refrigeración: 9,6kwh/m² año

2. CONSUMO HÍDRICO: datos del ITEC

Ducha: 701/persona.día Lavabo:301/persona.día Fregadero:51/persona.día

3. EDIFICACIÓN TIPO: bloque de viviendas de ensanche urbano

195m² de planta 420m² de fachada

4. COSTE DE ENERGÍA Y AGUA: Agencia Local de la Energía y Aguas de Murcia

0.1147€/kwh 1.058€/m³

- 5. AMORTIZACIÓN: banco de precios para la Región de Murcia de CYPE ingenieros
- 6. RADIACIÓN SOLAR: Agencia de Gestión de la Energía de la Región de Murcia
- 7. VALOR DE CONVERSIÓN DE CO₂: Observatorio Regional del Cambio Climático

 $388 \ g. \ CO_2 / kWh$ $1440g \ CO_2/m^3$

CATÁLOGO DE ESTRATEGIAS

- ORIENTACIÓN DEL EDIFICIO. ESTANCIAS PRINCIPALES A SUR (±15°).
- VIDRIO DE CONTROL SOLAR EN ORIENTACIONES O Y NO.
- VIDRIO DE BAJA EMISIVIDAD TÉRMICA.
- INERCIA TÉRMICA + PROTECCIÓN SOLAR EN FACHADA. SUR
- GALERÍA ACRISTALADA + LAZOS CONVECTORES. SUR
- FACHADA TRASVENTILADA DE ALTA REFLECTIVIDAD. Oeste-Noroeste.
- EFECTO CHIMENEA Y TORRES DE VIENTO.
- VENTILACIÓN NATURAL CRUZADA-ESTRATIFICADA.
- ESPACIOS BAJOCUBIERTA NO HABITABLES.
- LIMITACIÓN DE PUENTES TÉRMICOS.
- CUBIERTA VEGETAL DE SEDUM.
- CUBIERTA ALJIBE
- CUBIERTA PESADA + ACABADO CLARO Y RUGOSO
- SANITARIOS Y GRIFERÍAS EFICACES
- EQUIPOS Y SISTEMAS DE ALTA EFICACIA
- SISTEMAS DE REGULACIÓN Y CONTROL INTEGRADOS

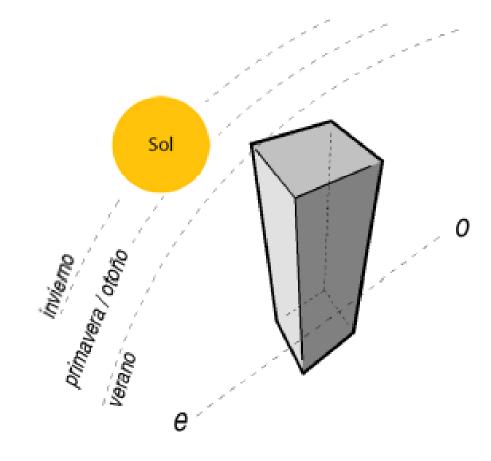
Camping de la Rafa, Bullas. Arqu. Fernando de Retes. MuB fotografía

ficha 1: ORIENTACIÓN DEL EDIFICIO. Sur

- ficha 2: VIDRIOS CON CONTROL DE INFRARROJOS. Oeste-Noroeste
- ficha 3: VIDRIOS DE BAJA EMISIVIDAD TÉRMICA.
- ficha 4: INERCIA TÉRMICA. ORIENTACIONES DE GANANCIA SOLAR ESTIVAL. Este, Sur,

Oeste y cubierta

- ficha 5: GALERÍA ACRISTALADA+LAZOS CONVECTORES. Sur
- ficha 6: FACHADA TRASVENTILADA DE ALTA REFLECTIVIDAD. Oeste
- ficha 7: AUMENTO DEL AISLAMIENTO RESPECTO A LOS REQUERIMIENTOS DEL CTE
- ficha 8: CUBIERTA VEGETAL DE SEDUM (PLANTAS QUE NO NECESITAN


MANTENIMIENTO)

- ficha 9: CUBIERTA CON ALJIBE
- ficha 10: EMPLEO DE REDUCTORES DE CAUDAL EN LA GRIFERÍA

DESCRIPCIÓN_ La orientación Sur permite que el edificio capte la energía solar en invierno y minimice su impacto en verano:

- -Resulta fácil la protección de las ventanas con toldos o persianas.
- -La mayor verticalidad de la radiación reduce el número de horas de incidencia solar.

▲ INFLUYE SOBRE EL CONSUMO EN_ calefacción e iluminación

PARA EL ESCENARIO DE ESTUDIO

▲ AHORRO ENERGÉTICO_ La ganancia de energía por radiación solar puede llegar a 1.710 KWh/año.

▲ AHORRO MEDIOAMBIENTAL_ Las emisiones de CO₂ se reducen en 867kg/año.

▲ COSTE INVERSIÓN INICIAL_ La adopción de una orientación adecuada en una vivienda estándar no ha de significar un aumento de coste.

▲ AHORRO ECONÓMICO ANUAL_ El ahorro energético supone un ahorro económico de196,65€/año

▲ VIABILIDAD NORMATIVA_ La posibilidad de <u>orientar bien un edificio</u> depende del <u>proyectista</u> y de la <u>tipología del emplazamiento</u>.

Convendría que los desarrollos urbanos INCORPORARAN CRITERIOS MEDIOAMBIENTALES para favorecer el desarrollo de edificios.

▲ VIABILIDAD TÉCNICA Y SOCIAL Esta medida NO supone ninguna implicación a nivel técnico ni social.

ESTRATEGIA Griferías y sanitarios de alta eficacia	AHORRO ANUAL CO ₂ /H ₂ O 1.419,12kg / 98,55m ³	AMORTIZACIÓN ECONÓMICA O,5 años
Galerías acristaladas	1.111,97 kg	0 años
Cubierta Aljibe	1.056,20kg	10 años
Orientación del edificio	663,68 kg	0 años
Cubierta vegetal de Sedum	423,69kg	20 años
Fachadas ventiladas	369,80 kg	(Depende del sistema) 10 años
Aumento del aislamiento	296,82 kg	12,7 años
Inercia Térmica	234,31 kg	0 años
Vidrios de baja emisividad	214,17 kg	2,3 años
Vidrios de control solar	205,58 kg	6 años

El empleo de las estrategias de COSTE CERO:

ESTRATEGIA AHORRO ANUAL CO ₂ /H ₂ C

Galerías acristaladas 1.111,97 kg de CO₂

Orientación del edificio 663,68 kg de CO₂

Inercia Térmica 234,31 kg de CO₂

AHORRO TOTAL 2.009,96kg de CO₂

A este ahorro se puede añadir el uso de griferías de alta eficacia debido al sobrecoste despreciable que suponen:

Griferías y sanitarios de alta eficacia 1.419,12kg de $CO_2/98,55$ m³ de H_2O

AHORRO TOTAL 3.429,08kg de $CO_2/98,55$ m³ de H_2O

De los resultados obtenidos se pueden extraer entre otras las siguientes conclusiones:

- Los sistemas MÁS EFICIENTES energéticamente son también los MÁS ECONÓMICOS.
- En un clima cálido, como el predominante en el territorio Región de Murcia, el <u>AUMENTO DEL AISLAMIENTO ES MENOS</u> <u>ECOEFICIENTE QUE EL EMPLEO DE LA MASA TÉRMICA</u>, pues produce un aumento del ahorro energético similar en ambas estrategias (fichas 4 y 9 frente ficha 7) y el precio es muy superior.
- Para un empleo realmente eficiente de las estrategias de ahorro energético en la construcción es importante atender a LAS ORIENTACIONES ÓPTIMAS EN CADA CASO.
- Todas las estrategias planteadas son fáciles de encontrar en el mercado y sólo necesitan contar con la concienciación de técnicos, promotores y constructores a la hora de aplicarlas. Además LA GENERALIZACIÓN EN EL USO de sistemas respetuosos con el medio ambiente y con una economía baja en carbono supondría UNA AMPLIACIÓN DE LA OFERTA.

